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Abstract — This paper shows that the k-means 

quantization of a signal can be interpreted both as a crisp 

indicator function and as a fuzzy membership assignment 

describing fuzzy clusters and fuzzy boundaries. Combined 

crisp and fuzzy indicator functions are defined here as 

natural generalizations of the ordinary crisp and fuzzy 

indicator functions, respectively. An application to iris 

segmentation is presented together with a demo program.  

Keywords — circular fuzzy iris ring, circular fuzzy limbic 

boundary, combined crisp indicator function, combined fuzzy 

indicator function, fast k-means quantization, fuzzy clusters, 

fuzzy boundaries, iris recognition, iris segmentation, k-means. 

I. INTRODUCTION 

ELATIVELY few iris segmentation techniques have 

been reported in the last two decades. In the classical 

iris segmentation procedures, like those in Wildes’s [1] 

and Daugman’s approaches [2]-[10], iris segmentation 

means fitting (nearly) circular contours by solving 3-

dimensional optimization problems to find a radius and 

two center coordinates via gradient ascent or by using 

edge detectors and Hough transform [11] or by iterating 

active contours [9], [10]. For a survey of iris recognition, 

we would like to refer to Bowyer et al. [12]. 

All of the previous iris segmentation approaches are 3-

dimensional optimization problems. They also assume that 

the segmentation is done before iris unwrapping. In this 

context two questions must be answered:  

 

Is it possible to formulate the finding of the limbic 

boundary as a 1-dimensional optimization problem or as a 

search in a 1-dimensional parameter space? If yes, would 

the resulting iris segments be accurate enough to 

guarantee strong recognition results? 

 

We give an affirmative answer to these questions while 

giving four reasons to work with circular approximation of 

the iris: 

i) It is clear that only by knowing the center coordinates 

 
Nicolaie Popescu-Bodorin is affiliated with the Mathematics and 

Computer Science Department - ‘Spiru Haret’ University of Bucharest 

(România), where he teaches Computational Logic and Artificial 

Intelligence Labs. As a PhD Candidate at the Mathematics and Computer 

Science Department - University of Pitesti (România), he works in the 

field of Digital Signal/Image Processing, specifically on Iris Recognition 

related topics. Correspondence address: Nicolaie Popescu-Bodorin, OP 

19, CP 77, Bucharest 3, RO.  

and by unwrapping the iris region in the first place, limbic 

boundary finding could become a 1-dimensional search for 

a radius i.e. a search for a line within the unwrapped iris 

region. Consequently, assuming a rough approximation of 

the actual iris as a circular ring concentric with the pupil is 

a choice [13]-[15] which guarantees an affirmative answer 

to the first question above.  

ii) An anatomic argument for using circular approximation 

of the iris is that since the pupillary boundary is nearly 

circular, there must be a circular concentric iris ring 

controlling the pupil movements. Such a circular iris ring 

is expected to play the most important role in iris 

recognition, despite the fact that it appears to be a rough 

approximation of the actual iris. 

iii) A system requirement supporting the use of concentric 

circular iris ring is that the segmentation routine must be 

fast and energy-efficient. Nearly lossless unwrapping of 

the iris can be computed using a polar or a bipolar 

coordinate transform, depending on the type assumed for 

the iris: either a concentric or an eccentric circular ring. 

The latter is computationally more expensive than the 

former because the eccentricity varies from one sample to 

another and consequently, one bipolar mapping must be 

(re)computed for each sample (eye image). When the iris 

ring is assumed to be concentric, the polar mapping is 

computed only once for all samples, during program 

initialization. 

iv) Last, but not least, a practical argument for using 

circular approximation of the iris is given by the quality of 

the recognition results presented in [13], [14] and by the 

iris segmentation results illustrated in [15]. 

A tougher question regarding the Circular Fuzzy Iris 

Segmentation procedure [13]-[15] is the following:  

Why are the operations within the segmentation 

procedure needed or expected to work well? 

The short answer to the above question came as a result 

of our experimental work and is stated here as a principle: 

detecting a certain feature of a signal (of an image) is 

always a matter of finding a suitable quantization space 

and a suitable quantization function to enhance the target 

feature against ‘unwanted noise’ (against the surrounding 

neighbours in the feature space). In the best case scenario 

feature discovery would be nothing more than a well 

chosen binary encoding (compression) of the feature 

space. 
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Another four principles of k-means optimal signal 

quantization can be found in [16]
1
 together with the Fast k-

Means Image Quantization algorithm (FKMQ).  

A longer and more detailed answer to the last question 

from above will be given below in this paper. 

II. COMBINED CRISP AND FUZZY INDICATORS OF A 

DISJOINT REUNION 

Generally speaking, a segmentation technique working 

on discrete signals is a semantic operator encoding the 

input signal using a finite set of labels (symbols) which are 

somehow meaningful in human understanding of the input 

signal. The first difficulty in interpreting a segmentation as 

being fuzzy is the lack of instruments that could enable us 

to view the result of a segmentation as a crisp or a fuzzy 

membership function defined from the input signal to a 

collection of segments encoded as a list of arbitrary 

symbols, possibly non-numeric, and more often found 

outside [0, 1] interval. This section is meant to fill this gap 

by extending the definition of the ordinary crisp and fuzzy 

indicator functions to cover the above described situation.  

In fuzzy set theory [18], a membership function that 

only takes binary values is called a crisp indicator function. 

We extend the meaning of this definition by the following 

considerations: a crisp indicator is, in fact, the ordinary 

indicator function of an ordinary sub-set within a set: 

 )Aa(icallog)a(I,Xa};1,0{X:I AA ∈=∈∀→  (1) 

For any sub-set A of X, AAX ∪=  (where A denotes the 

complement of A in X), hence we may consider that the 

crisp indicator of A is nothing more than an encoding (in 

two symbols) of a disjoint cover of X containing two sets: 

A and A  (regardless of the nature or the values of those 

two symbols and of the nature of sets A and X). 

Consequently, it is natural to define combined crisp 

indicator of a disjoint reunion:  
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1 In [16], some considerations regarding the speed of FKMQ are 

already outdated by newer and faster implementation [17]. Also, the iris 

segmentation procedure proposed in [16] was temporarily abandoned for 

the following reason: despite its accuracy in finding the iris segment 

available in the eye image (see Fig.6-7 in [16]), ‘guessing’ the best 

eccentric circular ring that matches the available iris segment proved to 

be a tough challenge (an ill-posed inverse problem with 6 variables) and 

therefore, was impossible to formulate recognition results based on that 

segmentation technique. Still, future solutions to this problem are not 

excluded. On the other hand, it must be mentioned that the difference 

between the segmentation procedure proposed in [16] and Circular Fuzzy 

Iris Segmentation [13]-[15] is that the latter searches directly for the line 

approximating limbic boundary in the unwrapped iris region (it searches 

for a line number in a different and smaller feature space).  

means that a combined crisp indicator of a disjoint reunion 

is unique up to a bijective correspondence between the 

sequences of symbols that are used to encode the 

memberships to each set within the reunion. Hence, if X is 

restricted to R, the combined crisp indicator of a disjoint 

cover of X is exactly the equivalence class of all step 

functions that can be defined using the sets of that cover. If 

X is a discrete signal, then we resort to discrete step 

functions. Consequently, any discrete step function (in 

particular, any k-means quantization of a discrete signal) is 

equivalent (in the above defined sense) to a combined crisp 

indicator (3). Therefore, it doesn’t really matter what 

symbols (or values) are used to encode the crisp indicator 

function. Chromatic k-means centroids and cluster indices 

{1,…,n} are both equally suitable to encode a crisp 

indicator function describing the k-means clusters. 

 

The ordinary crisp indicator of a set is unique (up to a 

bijection, as described above), but the ordinary fuzzy 

membership assignment functions are not. The combined 

fuzzy indicators of a disjoint reunion inherit this property 

and they are defined here as follows: given a combined 

crisp indicator of the form (3), any monotone function 

XCFI satisfying the relation:  

 [ ] XX CCICFI = ,  (5) 

where ][⋅ denotes the integer part function, is a combined 

fuzzy indicator of the given disjoint reunion (2). In other 

words, the function: 

 ( )XXX CCICFIabs*2FIB −=  (6) 

is an ordinary fuzzy indicator of the boundaries between 

the sets of the reunion (2). Naturally, the combined crisp 

and fuzzy indicators (3, 5) of a disjoint reunion (2) and the 

ordinary fuzzy indicator of the boundaries (6) form an 

interdependent triplet. 

III. CIRCULAR FUZZY IRIS RING AND CIRCULAR FUZZY 

LIMBIC BOUNDARY 

Finding the pupil [11],[13],[14] enables us to unwrap a 

circular pupil-concentric region of the eye image (Fig.1.a) 

in polar coordinates (Fig.1.b), to locate the limbic 

boundary in the rectangular unwrapped eye image 

(Fig.1.c), and to obtain an iris segment as in Fig.1.e. 

 

Circular Fuzzy Iris Segmentation (CFIS, N. Popescu-Bodorin): 

INPUT: the eye image IM; 

1. Apply RLE-FKMQ Based Pupil Finder procedure [13], [14];  

2. Unwrap the eye image in polar coordinates (UI - Fig.1.b);  

3. Stretch the unwrapped eye image UI to a rectangle (RUI - Fig.1.c);  

4. Compute three column vectors: A, B, C, where A and B contain the 

means of the lines within UI and RUI, respectively. C is the mean of 

the lines within the [A B] matrix;  

5. Compute P, Q, R as being 3-means quantizations of A, B, C;  

6. For each line of the unwrapped eye image count the votes given by 

P, Q and R. All lines voted at least twice as members of an iris band 

are assumed to belong to the actual iris segment. Find limbic 

boundary and extract iris segment (Fig.1.d, Fig.1.e);  

OUTPUT: pupil center/radius, line number of the circular fuzzy limbic 

boundary, circular fuzzy iris segment; 

END. 
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Fig.1. Iris segmentation stages (CFIS)  

 

 
Fig.2. Fuzzy iris segment and fuzzy iris boundaries 

 

 
Fig.3. Circular Fuzzy Iris Segmentation Demo Program, 

http://fmi.spiruharet.ro/bodorin/arch/cffis.zip 

 

 

Fig.1 shows iris segmentation stages. The transform 

from Fig.1.a to Fig.1.b is a lossless pixel-to-pixel 

transcoding. The unwrapped iris region is further stretched 

and interpolated in order to obtain rectangular unwrapped 

iris (RUI – Fig.1.c). Altogether, Fig1.a-c illustrates a three-

step reversible polar mapping (lossless pixel-to-pixel polar 

transcoding, stretching and interpolation).  

 

One advantage of using such a polar mapping is that the 

original pixels within the initial circular iris ring can be 

traced at any time in the unwrapped versions of the iris. 

 

On the other hand, the extent of the black regions in 

Fig.1.b is a measure of the difference between an ideal 

polar mapping (in continuous geometry) and a practical 

lossless pixel-to-pixel polar mapping defined for digitized 

images. 

 

The third advantage is the fact that, here, the influence 

of pupil dilation on recognition performance (documented 

in [19]) is explained and illustrated graphically: the 

comparison of two irides means overlapping two trapezia 

through an elastic deformation. At least because of the 

collarette, the deformation in the radial direction is far 

from uniform. This is the reason why our Gabor Analytic 

Iris Texture Binary Encoder [13], [14] parses iris features 

only in the angular direction.  

 

Fig.2 shows what happens to vectors A, B and C at steps 

4-5 of the CFIS procedure: behind the combined crisp 

indicator function (crisp membership assignment) of a 3-

means quantization (Fig.2), there are fuzzy membership 

assignment functions defined from the set of lines within 

the rectangular unwrapped iris area (RUI-Fig.1.c) to the 

pupil, to the iris, to the area outside the iris and even to the 

iris boundaries. The area delimited between the fuzzy iris 

boundaries is a fuzzy iris band. Its preimage through the 

polar mapping is a circular fuzzy iris ring. Three fuzzy iris 

bands are determined using vectors A, B, C. The final 

result is computed by evaluating the odds that the lines 

within the unwrapped iris area belong to the actual iris 

segment. This is done in step 6 of the CFIS procedure by 

counting the votes received for each line within the 

unwrapped iris area as a member of a fuzzy iris band.  

 

The most important aspect of the CFIS procedure is that 

it performs three searches within a 1-dimensional signal 

whose length equals the radius of the initial iris circular 

region (Fig.1.a). For example, the dimension of the 

parameter space which needs to be searched in order to 

find the limbic boundary in Fig.2 is: 3*112=336 pixels. On 

the other hand, using a Hough accumulator with 343=7
3
 

cells to extract a circle (limbic boundary) from the edges 

of an eye image of dimension 240x320 pixels will be not 

only completely insufficient, but also computationally 

more expensive.  
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IV. THE DEMO PROGRAM 

Circular Fuzzy Iris Segmentation demo version [15] is 

currently implemented in Matlab and can be tested against 

the entire Bath University Iris Database (free version [20]) 

which contains 1000 eye images. Basically, the demo 

program is an implementation of the CFIS procedure with 

some specific practical adaptations: fault-tolerance, timing, 

visual display, etc.  

 

CFIS demo program enables pupil localization in 12 

frames per second and limbic boundary localization in 5 

frames per second, for eye images of dimension 240x320 

pixels. It also leads to the following iris segmentation error 

rates:  

- Total number of failures: 6; 

- Pupil finder failures: 1; 

- Limbic boundary detection failures: 5. 

The demo program proves that iris segmentation can be 

treated as being a 1-dimensional optimization problem if 

there is enough accurate morphological information stored 

as chromatic variation. 

Another important aspect is that the segmentation results 

obtained by applying CFIS procedure are confirmed by the 

recognition results in [13], [14]. 

V. CONCLUSION  

This paper introduced combined crisp and fuzzy 

indicators of a disjoint reunion which are meant to allow a 

unified dual description of the k-means quantization as a 

crisp and as a fuzzy entity, respectively.  

Both of them are instruments that enable us to view the 

result of a segmentation as a crisp indicator defined from 

the input signal to a collection of segments encoded as a 

list of arbitrary symbols (possibly non-numeric, and more 

often found outside [0, 1] interval), but also as a fuzzy 

membership function.  

A practical example is the case of Circular Fuzzy Iris 

Segmentation procedure in which combined crisp and 

fuzzy indicators are encoded in [1, 3] interval (Fig.2).  
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